
Preprint 
UCRL-JC-149277 

US. Department of Energy 

Laboratory 

Efficient Computation of 
the Topology of Level Sets 

V. Pascucci, K. Cole-McLaughlin 

This article was  submitted to  
Institute for Electrical and Electronics Engineers Visualization 2002, 
Boston, Massachusetts, October 27 - November 1,2002 

July 19,2002 

Approved for public release; further dissemination unlimited 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and 
shall not be used for advertising or product endorsement purposes. 

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be 
made before publication, this preprint is made available with the understanding that it will not be cited 
or reproduced without the permission of the author. 

This report has been reproduced directly from the best available copy. 

Available electronically at http:/ /www.doe.Pov/bridg 

Available for a processing fee to U.S. Department of Energy 
and its contractors in paper from 

U.S. Department of Energy 
Office of Scientific and Technical Information 

P.O. Box 62 
Oak Ridge, TN 37831-0062 
Telephone: (865) 576-8401 
Facsimile: (865) 576-5728 

E-mail: rePo rtsaado nis .os ti. vov 

Available for the sale to the public from 
U.S. Department of Commerce 

National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22161 

Telephone: (800) 553-6847 
Facsimile: (703) 605-6900 

E-mail: prders&tis .fedworld. ~ o v  
Online ordering: h&:/ /www.ntis.rov/ordedng.htm 

OR 

Lawrence Livermore National Laboratory 
Technical Information Department’s Digital Library 

http:/ /www.llnl.gov/ tid/Library.html 

http://www.llnl.gov


(b) The Augincnted Con 
tgalogy of thc isosu 

' W  

(c)-dm@ 

J h 



ergy between two molecules is a scalar field defined over a six di- 
mensional configuration space. The six dimensions are the three 
translational and the three rotational degrees of freedom of the rel- 
ative positions of the two molecules. The level sets of the field 
represent all the coniigurations which are energetically equivalent. 

The domain of a scalar field is typically a geometric mesh and 
the field is provided by associating each vertex in the mesh with a 
sampled scalar value. If the mesh is a simplicial complex then a 
piecewise linear function is naturally defined by interpolating lin- 
early, within each simplex, the scalar values at the vertices. If the 
mesh is a rectilinear grid then a piecewise hilinear function is natu- 
rally defined by interpolating, within each cell, the scalar values at 
the vertices. 

The Contour Tree is a data structure that represents the relations 
between the connected components of the level sets in a scalar field. 
N o  connected components that merge together (as one continu- 
ously changes the isovalue) are represented as two arcs that join at 
a node of the tree. The pre-computation of the Contour Tree allows 
one to collect structural information relative to the iswontours of 
the field. This can be used for example to speed up the computation 
of isosurfaces by computing seed sets over the contour tree data 
structure as in [ll]. The display [l] of the Contour Tree provides 
the user with direct insight into the topology of the field and reduces 
the user interaction time necessary to "understand" the structure of 
the data. Figure 1 shows an example of how information can be 
extracted from the Contour Tree display. 

The h t  efficient technique for Contour Tree computation in 2D 
was introduced by de Berg and van Kreveld in [5]. The algorithm 
proposed has O(n1og n) complexity. A simplified version, with 
same complexity in 2D and O(m2) complexity in higher dimen- 
sions, was proposed by van Kreveld et al. in [ll]. This new ap- 
proach is also used as a preprocessing step for an optimal isocon- 
touring algorithm. It computes a small seed set from which any 
contour can be tracked in optimal running time. The approach has 
been improved by Tarasov and Vyalyi [lo] achieving O(m1og m) 
complexity in the 3D case by a three pass mechanism that allows 
one to resolve the different types of criticalities. Recently Cam, 
Snoeyink and Axen [3] presented and elegant extension to any di- 
mension based on a two pass scheme that builds a join-tree and a 
split-tree that are merged into a unique Contour Tree. The approach 
achieves O(m + n log n) time complexity. 

One fundamental limitation of the basic Contour Tree is the lack 
of additional information regarding the topology of the contours. In 
high pressure chemical simulations [9] hydrogen bonds between the 
atoms caunot be represented in a traditional way, but can be char- 
acterized by isosurfaces of potential fields. The Contour Tree pro- 
vides important information regarding the clustering of atoms into 
molecules but fails to discriminate between linear chains and closed 
rings (or more complex structures) which have different physical 
behaviors. In [8] we introduced the first efficient algorithm for the 
computation of the Betti numbers of all the level sets of a scalar 
field in O(m log m) time. 
The first part of this paper introduces an extension of the algo- 

rithm in [31 that allows one to add the Betti numbers of each con- 
tour while maintaining the simplicity of the scheme and the efficient 
O(m + n log n) time complexity. 
The second part of this paper introduces a new divide and con- 

quer scheme for the computation of the Contour Tree. The basic 
idea is to compute mergdsplit-trees by combining recursively the 
same trees computed for two halves of the mesh. This approach al- 
lows one to achieve better modularity by confining any knowledge 
of a specific interpolant to an oracle that computes the tree for a 
single cell (in the appendix we report the oracle for the trilinear in- 
terpolant). In our analysis of the scheme for the case of rectilinear 
grids (m = e(n)) we show a time complexity of O(n + t log n), 
where t is the number of critical points in the field 

The algorithm is also easy to parallelize. We report running 
times for a parallel implementation, showing good scalabiity with 
the number of processors. 

2 The Contour Tree 
Consider a scalar field 3 defined as a pair (f, M), where f is a 
real valued function and M is the domain of f. In the following 
two sections the domain M is assumed to be a simplicial complex 
with n vertices and m cells. In Section 5 the domain M is assumed 
to be a rectilinear grid. Within each simplex of M the function f is 
the linear interpolation of its values at the vertices (trilinear for grid 
cells). In other words the field 3 is completely defined by the mesh 
M = {VI,. . . , v,,} and the set of scalar values {fl, . . . , f,,} where 
fi = f (ui) .  Since M is connected (or processed one connected 
component at a time) the range of f is a simple closed interval 
r = [ fmin,  fmoz] where fmin = min {fi , . . . , fn} and fmoz = 
max(f1,. . . , fn}. 

For simplicity of presentation M is also assumed to be homeo- 
morphic to a 3-ball. One fundamental way to study the field 3 is 
to extract its level sets. For a given scalar z the level set L(z )  is 
dehed as the inverse image of z onto M through f: 

L(z) = f-'(z). 

We call each connected component of the level set L(z) a con- 
tour. One aspect that is well understood in Morse theory [7] is 
the evolution of the homology classes of the contours of 3 while 
x changes continuously in r. The points at which the topology of 
a contour changes are called critical points and the corresponding 
function values are called critical values. The critical points are 
usually assumed to be isolated. This assumption is not satisfied in 
general but can be enforced by small (symbolic) perhubations of 
the function values {fl, . . . , f,,} as discussed in Section 3. 

Here this perturbation procedure is weakened by simply assum- 
ing that the function values { f1, . . . , f,,} are sorted from the small- 
est to the largest so that i < j =+ fi < fj. This can be enforced 
with an O(n log n) preprocessing step. In the following the order 
of the fi is used to resolve non-isolated criticalities. 

We follow the notation of [3] and define the Contour Tree (CT) 
as a tree whose vertices are associated with a function value fi and 
whose connectivity represents the relation among the contours of 
3 as follows. 

0 Each leaf of CT represents a local extremum where a con- 
tour is created or destroyed, for continuous changes of z. The 
function value of the extremum is associated with the leaf 
node of CT. 

0 Each interior vertex of CT represents the merging d o r  
splitting of two or more contours for continuous changes of 
x. The function value at which a splitlmerge occurs is associ- 
ated with the no&. 

0 Each arc of CT represents a contour that remains isolated for 
values of z ranging between the function values associated 
with the end nodes of the arc. 

Figure 2 shows a 2D scalar field with the associated Contour 
Tree. Note that the Contour Tree is not a complete Morse graph 
of F since the topological changes of a single contour are not 
recorded. A more intuitive way to characterize the Contour Tree 
is the following informal definition: 

The Contour Tree of 3 is the graph obtained by contin- 
uous contraction of each contour of 3 to a single point. 
Adjacent contours are contracted to adjacent points. 
Distinct contours are contracted to distinct points. 
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CT can be done directly during the construction of the JT and of 
the ST. This makes the algorithm slightly more complicated but 
has the advantage of reducing the size of the intermediate storage. 

This last stage of the algorithm has O(n) complexity. Overall the 
algorithm for constructing the CT has O(m + n log n) complexity, 
since t is never greater than n. 

4 Betti Numbers Computation 
This section introduces a m c a t i o n  to the function ContourTree 
that provides a more detailed characterization of the contours of a 
scalar field. The output generated by the modified function is the 
Augmented Contour Tree (ACT),  as defined in [8], which has a 
triple (Bo, P I ,  P 2 )  of Betti numbers associated to each arc of the 
tree. The k-th Betti number P k  of a simplicial complex is the rank 
of its k-dimensional homology group. We restrict our attention to 
level sets of 3D scalar fields, which are 2-dimensional complexes. 
In this case only the first three Betti numbers may be non-zero. 
Their intuitive interpretation is as follows: is the number of con- 
nected components, is the number of independent tunnels, and 
$2 is the number of voids enclosed by the surface. 

Figure 3(a) shows the minimal CT for a simple scalar field that 
has one minimum at isovalue x = 0. The level set f-'(o) is a 
single contour coincident with the boundary of the mesh (on the 
bottom left). As the isovalue is continuously increased, the level 
set splits into four contours at isovalue x = 2 (on the middle left). 
Each contour shrinks to a single point and disappears at the maxi- 
mum isovalue x = 4 (on the top left). Figure 3(b) shows the mini- 
mal ACT for the same scalar field. The added information allows 
the user to observe that the level set at the minimum is topologically 
a sphere (Po = 1,& = 0, = 1) which tums into a toroidal con- 
tour (Bo = 1, = 1) at isovalue x = 1.2. The toroidal 
contour then splits into four components each being a topological 
Sphere. 

In general the ACT has the same structure of the CT since it has 
the same nodes of degree not equal to two (extrema and mergdsplit 
points) and the same connectivity among them. The main differ- 
encebetween the two trees is that the CT,  inits minimal form, has 
no nodes of degree two. In contrast the ACT requires degree two 
nodes at the isovalues where a contour changes its topology with- 
out splitting or merging. Because of these added nodes, each arc 
of the ACT is associated with a family of contours that are homo- 
logically equivalent and hence qualified by the same set of Betti 
numbem. Moreover the contours associated with an arc contain no 
critical points and the Betti numbers are restricted as follows: (i) 

is always 1, (ii) $2 is 0 for surfaces with boundary (open) and 
is 1 for surfaces without boundary (closed). Once and Pz are 
determined we can compute the value of using its relationship 
with the Euler characteristic x: 

= 2, 

x = B o - P 1 + P 2 .  (1) 

Given a triangulated surface, the Euler number x is defined as the 
number of vertices minus the number of edges plus the number of 
faces. In addition to computing the Euler number, for each contour 
we count the number of boundary edges (be). In this way we can 
determine 82 by checking if be > 0 and then use (1) to compute 
$1 =Bo +& - x .  

In a preliminary stage we compute, for each vertex u, the in- 
formation necessary to &tennine the difference between the Euler 
number of the level set L(f(u)  + e)  and the Euler number of the 
level set L(f(u)  - e) where E > 0 is an arbitrarily small number 
(remember that f ( u )  = f(w) implies u = w). Figure 4 shows 
two such level sets for a 2D scalar field The vertices with function 
value greater than f ( u )  are marked @ and the vertices with func- 
tion value smaller than f ( u )  are marked e. Any simplex containing 
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Figure 4 Comparison between two level sets (isolines in gray) of 
a 2D scalar field. (a) shows an isoline of isovalue f ( u )  - e. (b) 
shows an isoline of isovalue f ( u )  + e. The difference between 
combinatorial structure of the two isolines is confined within the 
star of simplices incident to u. 

both vertices of type @ and vertices of type e give the same con- 
tribution to the Euler numbers of the two contours and hence are 
not considered. The only simplices that are relevant are those con- 
taining u and only vertices of type e or those containing u and only 
vertices of type @. We call the lower star of u the set of simplices of 
the first type (u, e,. . . , e) and the upper star the set of simplices 
of the second type (u, @, . . . , @). For both stars we compute the 
respective Euler numbers LS and US (number of vertices minus 
number of edges plus number of triangles minus number of tetra- 
hedra). We also count the difference Abe between the boundary 
edges of L(f(u)  - e)  and L(f(u)  + e).  This is summafized in the 
following algorithm. 

LUStars(uertices, edges, triangles, tetrahedra) 
1 fori = 0 ton - 1 do: 
2 Lsi=usi=1 
3 Abei=O 
4 for each edge (u;, uj)  with i < j do : 
5 L S j t L S j - 1  
6 U S i t U S i - 1  
7 forePchtrian%e(ui,uj,uk)~thi< j < k d o :  
8 L S k t L S k + 1  
9 usitusi+1 

10 if (vi,  U j ,  U k )  is a boundary triangle then: 
11 A b e k t A b e k - 1  
12 AbejtAbei+1 
11 for each tetrahedron (uj, uj, u ~ ,  81) with i < j < k < 1 do : 
12 LSl t LS1-1 

14 return(L.9, US, Abe) 
13 USi t US;-1 

From a CT that contains all the nodes we build the correspond- 
ing ACT. We call xij the Euler number of the contour associated 
with the arc i j  of the CT.  For any fixed i the summation xij ,  
with j < i, is the sum of the Euler numbers of the contours of 
L(f(ui )  -e) which intersect the star of ui. Similarly we denote by 
bei j  the number of boundary edges of the contour associated with 
the arc ij. 

We consider, at a generic node i, the relation between LSi, USi 
and the Euler numbers of the contours associated with the arcs in- 
cident to i. In particular each edge, triangle and tetrahedron in the 
lower star of ui produces one vertex, edge and face, respectively, 
in some contour of L(f(ui) - E ) .  In the same way each edge, tri- 
angle and tetrahedron in the upper star of ui produces one vertex, 
edge and face, respectively, in some contour of L(f(ui) +e). Since 
these two terms are the only difference between the Euler numbers 
of L(f(ui)  - e) and of L(f(ui) + e)  we can write: 





the explicit formula xij = LSi - US; + xi, if j > i, or with the 
explicit formula xij = USi - LSi - xi ,  if j < i. The node i and 
the arc i j  are then removed from CT invalidating the jth equation 
of (2) since the term xij is no longer present. We restore its cor- 
rectness by adding the value of xij to x j ,  if j > i (or subtracting 
if j < i). Thus, after each iteration the CT is reduced by an arc, 
while the systems (2) and (3) remain true. 

At the end of the loop the tree CT has no arcs and all the terms 
0 xij and beij are computed. 

Complexity. The complexity of the procedure LUStars is 
O(m) while the complexity of AugmentedContourTree and Bet- 
tiNumbers is O(n). Overall the computation of the ACT with the 
Betti numbers remains O(m + n log n). This is an improvement 
over the previous O(m1og m) achieved in [SI since m can be as 
big as O(n2). 

5 Divide and Conquer for Rectilinear 
Grids 

This section introduces a new way to compute the JT and the ST 
using a divide and conquer strategy. We restrict our analysis to the 
case of scalar fields F = (f, M) where M is a rectilinear mesh of 
dimensions ntzz x nu x nz . This is the type of mesh that typically has 
the largest number of vertices (i.e. the type used in the largest simu- 
lations or generated by high resolution W C T  scanning devices). 
In t h i s  case the function f is dehed within each cell as the trilinear 
interpolation of the field values at the eight vertices. In t h i s  frame- 
work we cannot use the algorithm ContourTree since it assumes 
properties that are specific to a piecewise linear interpolant. For ex- 
ample, the triliear interpolant admits critical points in the interior 
of a cell, a condition not allowed by ContourTree. Triangulating 
the cells of the grid is usually not an option for large data-sets espe- 
cially because the same topology cannot be reproduced in general 
unless several more vertices are added to each cell of the mesh. 

Our approach overcomes this problem by assuming an oracle 
OradeJT(F, M )  that returns the JT of 7 if M is a single cell. 
We have implemented such an oracle for the trilinear interpolant 
on a cube (see Appendix). To extend the scheme to data-sets with 
other types of interpolants, for example a triquadratic interpolant, 
requires only to replace the function OracleJT. OracleST(F, M)  
is simply OradeJT(-F, M). 

Recursive algorithm. The algorithm has the same structure of 
a merge sort scheme with the added feature that non-critical ver- 
tices are removed as soon as possible. This removal provides an 
output sensitive character to the algorithm that improves both its 
time complexity and its space complexity. 

RecursiveJT(F, M )  
1 if Dirnensions(M) = (2,2,2) then 
2 returnOradeJT(F,M) 
3 [M1,M2] t Split (M) 
4 JTi t R e c u r s i d  (F,Mi) 
5 JT2 t R e ~ ~ r s i d  (7, M2) 
6 JT t MergeJT(JT1, JT2) 
7 return Redu~e(JT) 

The function Split (M) divides in constant time the domain of 
the mesh into two approximately equal meshes MI and M2. In 
particular if M has size (n2, nu,ns), with n2 2 ny 2 ns, then 
MI has size (n;,ny,n,) and M 2  has size (ng,ny,nz), where 
n; = [nz/21 and n: = n2 + 1 - n;. 

Tree merging. The routine MergeJT below combines the join 
trees of the two halves of the mesh using a UnionFind data-structure 
in the same way the routine JoinTree computes the global JT from 
the edges of the mesh. ' h o  key differences need to be highlighted: 

0 MergeJT sorts the input nodes in linear time since JT1 and 
JT2 have their nodes already sorted. In particular one linear 
scan through the input trees sorts the nodes and at the same 
time merges the duplicate nodes, which correspond to ver- 
tices on the surface MI n M2.  This task is performed by 
MergeNodesSorted which also retums the total number of 
distinct nodes. 

0 MergeJT copies verbatim into JT the independent portions 
of JT1 and of JT2. The 
UnionFhd data-structure is used starting at the nodes that 
correspond to local minima of the scalar field restricted to 
M I  n M 2  (71MlnMz). The test for minima is performed 
by IsMin in constant time. 

This is done in linear time. 

MergeJT(JT1, JT2) 
1 JT= NewTree() 
2 uF= NewUFO 
3 k t MergeNodesSorted( JT1, JT2)) 
4 foreachnodei = 0 tok - 1 do: 
5 AddNode( JT, i )  
6 
7 
8 i' t Find(UF,i) 
9 j' t Find(UF,j) 

10 
11 Union(UF, i', j') 
12 returnJT 

if IsMin(FIMlnM1, i )  then NewSet(CP, i )  
for each edge v;vj with j < i do: 

if j' # i' then AddArc( JT, i', j ' )  

Let n be the number of vertices of M1 and M2, k be the 
number of nodes of JT1, JT2 and t be the number of the min- 
ima of F ~ M ~ ~ M ~ .  The complexity of MergeJT is O(n213 + 
k + t logt) .  Since t = O(n213) we can rewrite the complexity 
as 0 ( ~ 2 / 3  log + k). 
ACT Reduction. As shown in section 4, Reduce can test if a 
point i is non-critical simply by looking at LS; and USi. In th is  
context IsRegular performs the same combinatorial test modified 
for the interpolant used by OracleJT. Note that the last call to Re- 
duce should be modified to not check Islnterior, so that all of the 
non-critical points are removed. 0t.krwise non-critical points on 
the boundary of the mesh would remain in ACT. 

Reduce(ACT) 
1 fori=Otondo: 
2 if Islnterior(i) and IsRegular(i) 
3 DelNode(ACT,i) 

Complexity. To determine the complexity of R e c u r s i d  we 
analyze separately the cost of dealing with the interior critical 
points and the cost of dealing with the boundaries that are ar- 
tificially introduce by the subdivision process and removed by 
MergeJT. 

We assume that n is the number of cells of M and that Split ~XU- 
titions M into two equal halves of size n/2. Therefore the number 
of levels in the recursion tree of R e c u r s i d  is log n. 

The function OradeJT, which takes constant time, is invoked 
exactly n times (once per cell), accounting for a e(n) time com- 
plexity. 



As the sub-meshes are merged together boundary points become 
interior points. In particular every point is processed by Reduce in 
constant time. Moreover any point that fails the test IsRegular is 
also processed in constant time by MergeJT at every level of the 
recursion. If 3 has t critical points we spend O(n + t log n) time 
to find and process them. 
To analyze the cost of dealing with the boundaries we apply 

the master theorem of recursive functions reported on page 62 
of [4]. The theorem allows one to determine the complexity of 
a function T ( n )  on the basis of the recurrence formula T ( n )  = 
2T(n/2) + f(n) and the complexity of the function f (n).  In this 
case T ( n )  is the complexity of our recursive algorithm and f(n) is 
the complexity of MergeJT with reference to the boundary points 
only (the other points have already been accounted for). As dis- 
cussed earlier the highest cost in MergeJT is due to the Union- 
Find, which we have set conservatively to O(n21310gn). This 
means that f (n)  has complexity O(n'-') for some e and hence 
T ( n )  = e(n). In conclusion the complexity of RecursiveST is 
O(n + t log n For practical cases where t is less than linear we 
have t = O(n'") which means the overall complexity is O(n). 

For the case of large data-sets it is also crucial to minimize the 
cost of any auxiliary storage. Beyond linear storage in the size t of 
the output, RecursiVeJT keeps a storage proportional to the bound- 
ary of the mesh. Overall the auxiliary storage is O(t + n213). 

2 
4 
8 
16 
32 

relative to the sequential case is reported in figure 5, compared to 
the ideal l i a r  speedup (top line in the chart). 

1.9754 1.9801 1.9988 1.9993 
3.7633 3.9168 3.9445 3.8986 
7.4461 7.6365 7.3503 7.0672 
13.949 15.457 14.302 12.864 
26.465 28.460 27.132 20.797 

I N P I  mIP I Rho I Engine I Foot I I 64x64~64 I 128x128~128 I 256x256~110 I 125x255~176 I 
I 1  I 1.oooO I 1.oooO I 1.oooO I 1.oooO I 

Table 1: Performance results for four sample data-sets. The values 
given are the speedups achieved in computing the ACT on NP pro- 
cessors as compared to the case =I. The ideal speedup would be 
NP t imes faster. 

6 Practical Results 

This section reports some practical results from our implementation 
of the the two algorithms discussed in Sections 4 and 5. We first 
present an example of the Augmented Contour Tree of the scalar 
field obtained for a simple molecular data-set (methane) that shows 
surprisingly intricate topological structures. Next we compare the 
timings for the computation on data-sets of five different sizes. 

M0th.W. We consider the topological analysis of a small scalar 
field computed by an ab initio simulation conditions for the 
methane molecule. We have computed the ACT and displayed it 
using the graph drawing tool graphviz [a. The top portion of this 
graph is shown in figure 1, along with several isosurfaces, and their 
corresponding points in the ACT. We focus on this portion of the 
dataset since it is kwwn that the simulation becomes less reliable 
at lower densities. 

The Methane dataset, which is on a 32x32~32 rectilinear grid, 
is the simplest m-trivial dataset we explored. It is a nice exam- 
ple, since the visualization of the tree is possible by conventional 
means. This gives us a good way of exploring the possibilities of 
using the ACT as an interface for data understanding. We see from 
the isosurfaces (b), (c) and (d) that there is useful information sum- 
marized in the ACT which is not obvious from the visualization. 
The isosurfaces (b) and (c) can be seen immediately to have /31= 6 
and /31 = 18 respectively, which implies that their respective genus 
g = 3 and g = 9 since g = p1/2 for closed surfaces. In the iso- 
surface (d) the initial visualization shows a single surface, whereas 
the ACT shows 2 distinct components. Only after adding a clip- 
ping plane the second component is shown to be enclosed within 
the first. 

Performance. We have implemented in parallel the divide ami 
conquer ACT algorithm on a shared memory platform. This is 
simply done by creating at each recursion two processes that com- 
pute join and split trees for each half of the mesh. The recursion 
become sequential as soon as the desired number of processes is 
reached. Table 1 summarizes running times for four data-sets of 
sizes scaling from thousands to millions of vertices. The speedup 

Figure 5 Practical speedups obtained in the parallel implementa- 
tion for four datasets of different sizes, compared with the ideal 
linear speedup. 

One can see that the speedup obtained in the parallel implemen- 
tation scales nearly linearly. The coarse grained subdivision in our 
method is easily implemented in parallel. Each processor becomes 
responsible for a connected subregion of the mesh, and works com- 
pletely independently of the other processes. The only communica- 
tion necessary is for achildprocess toreturn the JT and ST that it 
computed to its parent. 

7 Conclusions 

In this paper we have introduced two schemes for the computation 
of the ACT for scalar fields &lined on simplicial meshes and on 
rectilinear grids. The first scheme is an extension of the algorithm 
proposed in [3] with the computation of the Betti numbers. 

The second contribution is a divide and conquer scheme for rec- 
tilinear grid domains. The complexity of this second scheme is 
improved further to O(m + t log n) where t is the number of crit- 
ical points in the mesh. Moreover we demostrate good practical 
scalabiity of a simple parallel implementation of this algorithm. 

The comparison between the two schemes is interesting even if 
they apply to different classes of inputs. In particular the divide 
and conquer approach seems to present several advantages espe- 
cially for the processing of large data-sets. For instance, the auxil- 
iary storage is kept as low as O(n213 + t). In contrast the original 
scheme can have O(n) auxiliary storage since the union find pro- 



cessing needs to maintain auxiliary information on a set of vertices 
as large as the largest isosurface in the mesh. 

In principle there seem to be no major problems preventing 
the application of the divide and conquer scheme to unstructured 
meshes but further investigation is necessary to verify if the same 
performance benefits can be guaranteed in general. 

The simple task of drawing the CT has become a major problem. 
For data-sets that we have successfully processed we already obtain 
trees that current graph drawing tools cannot hade .  Still we plan 
to work on data-sets that are orders of magnitude larger. In such 
cases the development of interfaces that display the CT will present 
a major challenge. 
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Figure 6 (a) 2D bilinear function. The saddle point s is marked 
with the symbol 0. The horizontal line I, and the vertical line I, 
have constant function value and intersect at s. The orientation of 
the edges of the rectangles A,B,and C is along growing F .  (b) 
Split trees of F restricted to the rectangles A, B and C. Bm is the 
minimum between B,l and Bm2. 

Appendix 
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present in the cell. 
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horizontal line I, : y = -b/a. Since aF/ax is not a function of 
x the restriction Fly=con.t of F to any line parallel to the x axis 
has constant gradient. The gradient of Fly=con.t on all the lines 
above I, is anti-parallel to the gradient of Fly=const on all the lines 
below I, (see Figure 6). Similarly, I, separates the vertical lines 
where Flz=const has upward gradient from those with downward 
gradient. 

Fact 1 There is exactly one saddle point s of F in the plane. 

Fact 2 nte function F is constant on the line I ,  orthogonal to the 
x and on the line I ,  orthogonal to the y a i s ,  where I ,  intersects I ,  
at the saddle point s of F. 

We analyze the restriction of F to axis aligned rectangles. Since 
F is hea r  along each line parallel the coordinate axis we can mark 
each edge of a square with respect to the direction of increasing 
values of F. Figure Ha) shows the three Werent types of squares 
that one can have with respect to the orientation of their edges. A 
square of type A has each pair of opposite edges with parallel ori- 
entation. Therefore A cannot intersect I, or I,. This type of square 
has one maximum AM and one minimum A, for FIA. A square 
of type B has both pair of opposite edges with anti-parallel orien- 
tation. Therefore B intersects both I, and I,. The saddle point s 



Figure 7: Possible configurations of split tree for a trilinear inter- 
polant restricted to and axis aligned parallelepiped. One the left 
of each tree there are one or two examples of corresponding paral- 
lelepipeds. (a) One maximum. (b) ' h o  maxima. (c) Three max- 
ima. (d) Four maxima. (e) Split tree with four maxima that cannot 
be constructed. 

must be inside B because it is at the intersection between I, and 
I , .  All four vertices of B are extrema (two maxima and two min- 
ima) of FIB. In the third type of square C one pair of opposite 
edges are parallel while the other pair are anti-parallel. Thus, C 
must intersect either I, or I,, and Flc has one maximum and one 
minimum. 

Fact 3 The bilinearfunction F restricted to an axis aligned rectan- 
gle can have only one or two maxima. The maxim can be located 
only at non-adjacent vertices. 

Figure 6(b) shows how the split trees of FIA and of Flc are 
both single lines connecting the minimum to the maximum. The 
split tree of FIB has one line that connects the lower minimum to 
the saddle s. At s the split tree of FIB bifurcates into two lines 
connecting s to the two maxima 

Trilinear Interpolant on a Parallelepiped 
We extend our analysis to the trilinear case and show how to com- 
pute the shape of the split and merge trees for a cube on the basis 
of the orientation of its edges and the function value of the even- 
tual body saddle points. The general formulation of the trilinear 
interpolant is: 

F(x,  y, z)  = axyz + bxy + cxz + dyz+ ex +gy  + hz + k, (5)  

with gradient: 

1 e + by + cz + ayz [ h + cx + dy  + axy  
V F =  g + b x + d z + a x z  . 

It is easy to see that restricting (5) to any plane orthogonal to 
a coordinate axis (for example of equation x = m s t )  yields the 
bilinear function of type (4). Therefore there is no local minimum 
or maximum of F .  Solving V F  = 0 we h d  two critical points of 
COordinateS: 

Figure 8 Impossible configurations that would be necessary to al- 
low the construction of a split tree shown in Figure 7(e). (a) 3D 
view. (b) projection onto the x y  plane. 

These critical points are both saddles (of indices 1 and 2). 

Fact 4 There are at most two critical points (both saddles) in E 

We next consider the restriction of F to an axis aligned paral- 
lelepiped P and mark its edges with the direction of i?lcreasig F .  
The restriction of F to any face of P is the bilinear interpolant dis- 
cussed in the previous section, therefore facts 4 and 3 imply that 
one can have maxima of FIp only at its vertices. Moreover, each 
face of P can have only two maxima so that the greatest number 
of maxima of FIp is four. Figure 7 shows the five distinct types 
of split trees that can be built with up to four maxima. We show in 
the following that the last type is not consistent with the topology 
of the trilinear interpolant. 

Fact5 The split tree of FIp cannot have the topology of Fig- 
ure 7(e). 

PIT& Assume that the tree of Figure 7(e) is a valid split tree 
for some FIp with maxima M1, M2, M3 and M4. This means 
that there exist an isovalue w such that the region of P with F 
greater than w is partitioned into two connected components R1 
(containing M1 and M2) and R2 (containing M3 and M4), as 
shown in Figure 8(a). Since R1 is connected we can find a line I1 
that connects M1 to M2 within R1. Similarly we find a line I2 that 
connects M3 to M4 within R2. 

Let's call S1 the front square containing the maxima of R1, and 
S2 the back square containing the maxima of R2 (S1 and S2 must 
be opposite faces of P). We assume, without loss of generality, that 
S1 and S2 are orthogonal to the z axis. We consider the parallel 
projection P along the z axis, onto the x y  plane. The images I : ,  I: 
of I I ,  I2 must intersect in P' (projection of P )  because they connect 
the two pairs of vertices. Their intersection point r' = I: n I: is 
the image of aray r that is parallel to the axis z and that intersects 
both I 1  and 22 within P. By construction we have that F > w 
for q1 = r n I1 and for q2 = r n L .  Moreover, since R1 is not 
connected with R2, there must be a point q on r, between q1 and 
42, where F < w. Along r the value of F first decreases from 
F(q1) to F(q), and then increases from F(q) to F(q2). But in a 
trilinear function the value of F must be monotonic along any line 
parallel to an orthogonal axis. Thus we have a contradiction, since 
we have shown that F is not monotonic along r ,  which is parallel 
to the z axis. 0 

d(ae - bc) f 6 
X =  , y =  a(bc - ae) 

c(ag - bd) f 6 b(ah - cd) f 6 h conclusion we can state the following: ,I = a(cd - ah) ' 
Theorem 1 The topology of the split tree of FIp is completely &- a(bd - as) 

where the term 6 is either added in all expressions or subtracted 
in all expressions, and A is: 

A = (bc - ae)(bd - ag)(cd - ah). 

termined b>, the count of its local maxim 

The important practical consequence of this theorem is that we 
can precompute four templates of split trees and for each element 



in the mesh we select the appropriate template simply from the ori- 
entation of the edges. Simple numerical computations allow one to 
determine the specific values of the saddles where the merge occurs. 


